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Abstract. The present paper is concerned with the study of an internal penny shaped crack 

problem in an infinite transversely isotropic piezoelectric layer. The crack is supposed to be 

opened by an internal uniform pressure 0p along its faces. The layer surfaces are assumed to 

be acted upon by a uniformly applied line load of magnitude P acting along the 

circumference of a circle of radius )( ba  .The applied load may be tensile   or compressive 

in nature.   Furthermore, it is assumed that the line joining the centers     of the two line load 

circles passes through the center of the penny shaped crack and is perpendicular to the plane 

of the crack. Due to the assumed symmetries in material properties as well as the symmetry 

in applied loadings the present problem can easily be modeled as a two dimensional 

problem. Using Hankel transform technique the solution of the problem has been reduced to 

the solution of two singular integral equations. The integral equations are solved numerically. 

The stress-intensity factor and the crack opening displacements are determined and the 

effects of piezoelectricity and anisotropy on them  in both the cases are shown graphically. 
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1.    Introduction   

 

In course of the study of various properties of solid materials, the 

discovery of the piezoelectric effect has attracted the special attention of the 

scientists. Piezoelectric effect was discovered by Jacques and Pierre Curie in 

1880. It was found that during deformation of some crystals there was 

generation of electric charges on their surfaces. The reverse effect was 

observed in 1881 in which application of electric field on the boundary of 

certain crystals generates stress and strain in those crystals. These materials 

turn out to be very useful for their very special and unusual properties to 

produce electrical energy through use of mechanical loadings. Piezoelectric 
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materials, in particular, piezoelectric ceramics, have been widely used for 

applications in various fields such as sensors, filters, ultrasonic generators, 

actuators, laser, supersonics, microwave, navigation and biology. Piezoelectric 

composite materials are also in use in hydrophone application and transducers 

for medical imaging. Considering the huge applicability of these materials in 

various fields, solid mechanics problems are being studied in solids with 

piezoelectric properties. 

The determination of the state of stress in medium under applied load 

has been the subject of study in literature for many years. The study needs 

special attention and care when the elastic body develops a crack in it. 

Presence of a crack in a structure not only affects the stress distribution in it 

but also drastically reduces the life span of the structure. Presence of a crack 

in a solid also significantly changes its response to the applied load. Stress 

distributions in the solid with a crack are studied in two regions:  the region  in 

the neighborhood of crack, called the near field region and the region far away 

from  the crack, called the far field region.  Study of stress distribution in the 

near field region is very important because of the generation of stress of very 

high magnitude at the crack boundary leading to possible spread of crack. 

Stress intensity factor, crack energy etc. are some of the measurable quantities 

used for checking possible crack expansion. For a solid with a crack in it 

loaded mechanically or thermally [2, 4, 5, 8, 10, 11, 12, 17, 18] determination 

of stress intensity factor (SIF) becomes a very important task in fracture 

mechanics. SIF needs to be understood if we are to design fracture tolerant 

materials used in bridges, buildings, aircraft, or even bells. Polishing just 

won’t do if we detect crack. Crack problems in piezoelectric medium have 

been studied in literature following classical theory. A comprehensive list of 

work on crack problems in piezoelectric media done by earlier investigators 

can be found in [1, 3, 6, 7, 13, 16, 19, 20, 21, 23, 24]. 

The present investigation aims at investigating an internal penny shaped 

crack problem in an infinite transversely isotropic piezoelectric layer.  The 

crack faces are parallel   to the layer surfaces and the layer surfaces are under 

the action of compressive or tensile line loads applied along the circumference 

of circle such that the line joining the centers of these circles is perpendicular 

to the plane of the crack and passing to its centre. Hankel transform of 

different orders are applied on the governing equations and boundary 

conditions. Thereafter, using operator theory a general solution in terms of 

three potential functions has been derived. These functions satisfy differential 

equations of the second order and are quasi-harmonic functions. Making use 

of these fundamental solutions, the crack problem in the aforesaid case is 

investigated.  The solution of the problem has been reduced to the solution of 

Fredholm type integral equation of second kind which requires numerical 

treatment. Numerical solution is obtained through the process of discretization 

of the integrals, and based on the available parameter values, evaluation of 

stresses, SIF etc are obtained.  Finally, a discussion is made on the obtained 

results presented graphically. 
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2.       Formulation of the problem 

 

           We consider an infinite elastic layer of thickness 2h weakened by an 

internal penny shaped crack of radius b lying in the middle of the layer and 

opened by a pressure 0p on its faces (Fig.1). The material of the layer is 

elastically transversely isotropic with piezoelectric properties. The layer 

surfaces are subjected to circular line loads symmetrically applied with respect 

to the center of the penny shaped crack. Let       be the radius of the circle 

on which a load P is uniformly distributed, so that the load per unit length is  

a

P

2
. The applied load may be tensile or compressive in nature acting 

perpendicularly to the layer surfaces. We shall use cylindrical coordinate 

system ),,( zr  with origin at the centre of the crack and z-axis along the 

normal to the free surface. 

 

 

 
Fig.1. Geometry of the problem 

 

We shall also make the following additional assumptions: 

(i) There is no force of gravity 

(ii) The axis of symmetry of the transversely isotropic material is along the  

z- axis 

(iii) The  axis  of  polarization of  the  piezoelectric  material coincides  with  the  

z - axis 

(iv) Strains and displacements are small so as to apply linear  theory 

 

Because of assumed axisymmetry in elastic and piezoelectric properties 

and the nature of the applied load, the displacement vector ),,( zr uuuu 


will 

have its cross radial component 0u  and all the physical quantities are 
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independent of . The problem may thus be considered as a two dimensional 

one in the zr   plane with  r0  and .hzh   

The mathematical formulation of the problem consists of 
 

(A) Equilibrium equations: 
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(B) The boundary conditions: 
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                                                                       (8) 

                                                                            (9) 
       

  
                                                                     (10) 

The parameters      appearing in (1) are the elastic coefficients whereas      and 

    are piezoelectric and dielectric constants respectively of the material. In 

addition to the boundary conditions, the displacement components and the 

potential function   should satisfy the regularity condition           

as         . Here      is an unknown function and      is the Dirac 

delta function. In equation (4) positive sign indicates tensile force while 

negative sign corresponds to compressive force. 

 

2. Method of solution 

 

Solution of the partial differential equations (1) requires application of 

Hankel transform of different order. We shall follow the method adopted by 

[7] in our solution process. For clarity in our method of solution it would be 

better if briefly outline the first part of the method adopted by [7] here.  We 

shall use Hankel transform with respect to variable r to be denoted by ˆ, of 
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the functions ur, uz, Φ such that 

                           

 

 

                                                

                                              

 

 

                    

where J0 and J1 are the Bessel functions of the first kind and of order zero or 

one, respectively, and ξ is the transform  parameter. 

Using properties of Hankel transformation we obtain 
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It can be easily found that 

         
    

          
          

                          (15) 

where   
            are the roots of the following cubic algebraic equation 
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with the coefficients defined   by 
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Using the operator theory, we obtain the general solution to the equations (1), 

as 

 
                    

                    

                   

                                              (18) 

Where     are the algebraic cominors of the matrix operator and F̂ (ξ,z) is the 

zero order Hankel transform of the general solution F(r, z), satisfying the 

equations 
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Here,   
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Taking       and writing down the expression for    , we obtain 
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where 

 

 

                                                        
                                                                  
                                                                                           

      
          –                                                                           

 

 
                   (21) 

 

The inverse Hankel transforms to equation (20) yield 
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Using the generalized Almansi’s theorem [22], the function         which 

satisfies equation (19)2, can be expressed in terms of three quasi-harmonic 

functions 
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where         satisfies 
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As we shall see later that the roots of equation (16) are all distinct in our 

considered problem, so we shall consider only first solution in equation (23). 

Using 

       
 

  
  

     

and summing in equations (22), we  obtain 
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The coefficients     are 
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where         and    are defined by equations (21) and     . If we assumed 

that 

   
  

   
         

 

  
         

then equations (25) can be further simplified  to 
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and for the quasi-harmonic function          
 

   
 

  
 

  

   
                                               

The relationships between stress, displacement and electric potential for a 

transversely isotropic piezoelectric medium, in the case of axial symmetry, are 

 

    
   
   
   

   

   
   
   
 

     
     
     
 

 
 
 
   

 
 
 
   

   
   
   
 

 
 
 
   

   
   
   
 

 

 
 
 
 
 
 
 
     
  

 
     
     
     
  
   

 
 
 
 
 
 

  .                             (29) 

Substituting equations (26) into equations (29), we obtain 
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where 

    
        

        

       
    

             

       
                           

The components of the electric field vector    and     are obtained from   

relations 
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The electric displacements are defined by equations 
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In terms of     
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It can be easily verified that:  

Gauss’ law [16] 
   
  

 
  
 
 
   
  

                                                 

and equilibrium equations for stresses [14] 

 

 

    
  

 
    
  

 
       

 
   

    
  

 
    
  

 
   
 

   

                                     

are satisfied. 

In the vacuum, constitutive equations (33) and governing equations 

(36) become 
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where     is the electric permittivity of the  vacuum. 

For axially symmetric problems, the general solution of the differential 

equation (28) may be written as 
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where                       are arbitrary functions of the transform 

parameter  , which are to be determined from the boundary conditions (2)-(10) 

and    are the roots of equation (16). 

Using equations (39), (26) and (30) into the boundary conditions (2) − (10)  

we  obtain 

                
                                                        

 

 

 

   

 

                                                                                          

 

   

 

 

 
   
  

        
            

                 
 

   
       

 

 

 

   

             

                                                                                                                           
 

 
   
  

               
                                                   

 

 

 

   

 

 

           
            

                                                        

 

   

 

 

                     
            

 

 

                                              

 

   

 

 

                              

 

 

                                               

 

   

 

 

            
            

                  

 

 

                              

 

   

 

 

                    
            

 

 

                                               

 

   

 

On inverse Hankel transform, equations (40) and (42) become 
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Taking derivative with respect to    the equation (47) becomes 
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Equation (50) yields 
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Using equations (54) − (57) in equation (45) we get, 
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Then equation (59) is automatically satisfied. Use of equations (54) − (57) 

into (48) leads 
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Then equation (61) is automatically satisfied. Solving equations (60) and 

(62) we get 
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From equations (43), (54) − (57) we get 
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Again equation (65) with the help of equations (63),(64) yields 
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Now equation (66) can be written as 

 
  

      
                                 

 

 

                           
 

 

 

which is an Abel type integral equation,  where 

                    
          

 

 

                 
 

 

 

        
 

 
                                           
 

 

  

After some work we get the integral equation in     as 
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Taking derivative of equation (46) with respect to r and using equations (63), 
(64) we  get 
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Now equation (69) can be written as 

 
  

      
                                 

 

 

                        
 

 

 

which is an Abel type integral equation,  where 

                          
 

 

          
         

 

 

               

        
 

 
 

 

 
                                         

 

 

 

After some work we get the integral equation in      as 
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Before further proceeding it will be convenient to introduce non-dimensional 

variables       , and    
 
  by  rescaling by  length  scale b: 

   
 

 
        

 

 
       

 

 
                                                            

For notational convenience, we shall use only dimensionless variables and 

shall ignore the dashes on the transformed non-dimensional variables and the 

integral equations (68) and (71) become 
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where   is the load ratio defined as: 

  
 

     
 
   

These equations determine functions     and   . 
 

3.     Determination of stress intensity factor 

 

         Presence of a crack in a solid significantly affects the stress distribution 

compared to that when there is no crack. While the stress distribution in a 

solid with a crack in the region far away from the crack is not much disturbed, 

the stresses in the neighborhood   of the crack tip assumes a very high 

magnitude. In order to predict whether the crack has a tendency to expand 

further, the stress intensity factor (SIF), a quantity of physical interest, has 

been defined in fracture mechanics. The load at which failure occurs is 

referred to as the fracture strength.  The stress intensity factor is defined as 
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Use of the equations (66) and (5) and after some manipulation, the expression 

for      is obtained as 

    

 
 
 

 
                                                 

where       can be found out from the numerical solutions of the equations 

(73) and (74). Following the method as in [9] we obtain the crack surface 

displacement in the form 

                                                           
 

  

 

Taking the inversion of Hankel transform of equation (49) and using the 

equation (64) into the equation (76), we can express the dimensionless normal 

displacement as 

                  
     

     
 

 

                              
  

  

 

which can be obtained numerically, using Simpson’s  
 

 
  integration formula 
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and the  appropriate interpolation formula. 

 

5. Numerical results and discussions 

 

The present study shows how the presence of a crack in an anisotropic 

piezoelectric layer under applied line load affects stress distribution and crack 

surface displacement values and how the SIF is influenced by the anisotropic 

and piezoelectric character of the medium and also by the position of the 

applied load. Since these effects are not easily visible from our complex 

theoretical expressions, we have numerically solved the relevant equations 

based on the elastic and piezoelectric material parameter values for some 

specific materials. In our numerical computation we have considered the 

piezoelectric materials PZT-4 and PZT-5.  The parameter values for PZT-4 

[15] are 

               
           

                   
           

          
 

                    

 
            
            

               
                

                               
                       

 

and those of  PZT-5 [7] are 

               
           

               
              

           
 

                    

 
            
               

           
                

                            
                       

 

Considering the piezoelectric material of the layer as PZT-4, the variation of 

normalized stress intensity factor with b/h are shown in Figs. 2(a, b) for both 

the cases of applied compressive and tensile line loadings.   

Fig.2 (a) Variation of normalized stress-intensity factor       with     for various values of 

            in the case of compressive line load           .  (b)Variation of normalized 

           stress-intensity factor       with     for various values of   in the case of tensile 

           line load            . 
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b 

 

It is observed from Fig.2(a) that for compressive line loading the normalized 

stress-intensity factor       decreases with the increase of the load ratio   and 

the increase of       is quite significant for smaller values  of  . It is also 

observed from Fig.2(a) that the load ratio   does not have much effect on the 

stress intensity factor       for sufficiently small values of crack radius. Fig 2(b) 

represents the variations of       with crack length under tensile nature of line 

loading. Contrary to the previous case it is observed that       increases with 

 .For small crack radius, the behavior of       is similar to the case of 

compressive line loading.  

 
Fig.3 (a) Variation of normalized stress-intensity factor      for different values    

              in the case of compressive line load           (b) Variation of  

                          normalized stress-intensity factor       for different values of                      

                          in the case of tensile line load           

Fig.4 (a) Variation of normalized stress-intensity factor       with     for various ceramics  

            in the case of compressive line load                        (b) Variation of  

                 normalized stress-intensity factor       with     for various ceramics in the case       

                 of tensile line load                         

 

Figs. 3(a, b) display the variations of normalized stress-intensity factor 
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      for different line loading radius. It is noted that in the case of compressive 

line loading,       increases with increasing 
 

 
, but it decreases in the case of 

tensile line loading. In Figs. 4(a, b) normalized stress intensity factor experiences 

the effect of piezoelectric behavior under applied compressive and tensile line 

loadings corresponding to load ratio values           and          

respectively. The normalized SIF are similar in behavior in respect of variation of 

crack radius but PZT-5 showing relatively smaller values. 

Variations of normalized crack surface displacement         with 
 

 
 for 

different values of load ratio   are displayed in Figs 5(a, b). It is clear from Fig. 

5(a) that crack surface displacement         decreases as load ratio Q increases 

for compressive loading, while for tensile loading the result is just the opposite. 

As expected, symmetry in elastic and piezoelectric behavior together with 

symmetry in applied loading yield crack surface displacement symmetrical with 

respect to the center of the   crack. 

Fig.5 (a) Variation of normalized crack surface displacement         for various values of    

              in the case of compressive line load                           (b) Variation of  

                normalized crack surface displacement           for various values of   in the case                    

                of tensile line load                           

 

Fig.6 (a) Variation of normalized crack surface displacement          for various values of         

in the case of compressive line load                      (b) Variation of  

         normalized crack surface displacement         for various values of Q  in the case  

                 of tensile line load                         



ADVANCED MATH. MODELS & APPLICATIONS, V.2, N.2, 2017 

 
136 

 

Figs.6(a, b) illustrate the role of the radius of the applied loading circle on the 

normalized  crack  surface  displacement  for  particular  values  of  
 

 
      and  

load  ratio          for compressive loading and          for tensile loading.  

It is observed in Fig 6(a) that for compressive loading the normalized 

crack surface displacement increases with the increased values of  
 

 
  but behavior 

is just the opposite (Fig. 6(b)) for tensile loading. The effects of piezoelectric 

behavior on normalized crack surface displacement         are shown in Figs.  

7(a, b) taking 
 

 
      

 

 
      and load ratio          and          for 

compressive and tensile loadings respectively. As expected it is observed from 

Figs. 5-7, that the normalized crack surface displacement         assumes its 

maximum magnitude near the center of the crack.  

Fig.7(a) Comparison of normalized crack surface displacement         for various ceramics in the  

              case of compressive line load        
 

 
      

 

 
        (b) Comparison of  

               normalized crack surface displacement         for various ceramics in the case of tensile  

               line load                             

 

Fig.8 (a) Variation of electric displacement           with    for different values of    for  

                compressive line load                          (b) Variation of electric  

          displacement           with  r  for different values of    for tensile line load 
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Figs.  8(a,b) display variation of electric displacement          with     taking 
 

 
      

 

  
       and different load ratio    Fig. 8(a) shows that electric 

displacement          increases in magnitude with increasing   in the case of 

compressive loading while the effect is just the opposite for tensile loadings 

(Fig.8(b)).  The variation of           with different 
 

 
  and but fixed   and  

 

 
 are 

plotted in Figs 9(a, b).  It is observed that for compressive loadings the electrical 

displacement numerically increases with the increase of  
 

 
 values, while the effect 

is opposite in the case of tensile loadings.  

Fig.9 (a) Variation of electric displacement           with    for  different  values  of      for   

                compressive  line  load                          (b) Variation  of  electric   

                displacement           with    for  different  values  of      for  tensile line  

                 load                     . 
 

6. Conclusion 

 

The study investigates various aspects of the presence of a penny 

shaped crack located in the middle of a loaded anisotropic piezoelectric 

layer of finite thickness. It is observed that the applied line load can be 

suitably adjusted in controlling crack expansion. The position of the 

applied load, thickness of the layer with respect to the crack radius, 

piezoelectric and anisotropic properties, all are shown to have significant 

effects on every characteristic of a cracked medium. 
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